问题
选择题
已知空间向量
|
答案
由题意可得|
|=OA
2=(2
+a
)b
=4
2+2a
•a
+b
2b
=4×12+4×1×1×
+121 2
,7
同理可得|
|=OB
2=(3
-a
)b
=9
2-6a
•a
+b
2b
=9×12-6×1×1×
+121 2
,7
而
•OA
=(2OB
+a
)•(3b
-a
)=6b
2+a
•a
-b
2=6×12+1×1×b
-12=1 2
,11 2
故cos∠BOA=
=
•OA OB |
||OA
|OB
=11 2
•7 7
,可得sin∠BOA=11 14
=1-(
)211 14
,5 3 14
所以△OAB的面积S=
|1 2
||OA
|sin∠BOA=OB
×1 2
×7
×7
=5 3 14
.5 3 4
故选B