问题 解答题
阅读下列材料,并回答问题:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
1
4×5
=
1
4
-
1
5
,…
1
1×3
=
1
2
(1-
1
3
),
1
3×5
=
1
2
1
3
-
1
5
),
1
5×7
=
1
2
1
5
-
1
7
),…
(1)从计算结果中找出规律,利用规律性计算
1
2
+
1
6
+
1
12
+
1
30
+
1
42
+
1
56
+
1
72
+
1
90
=______;
(2)
1
1×3
+
1
3×5
+
1
5×7
+…+
1
99×101
=______;
(3)利用类似方法,求
1
1×4
+
1
4×7
+
1
7×10
+…+
1
19×22
的值.(写出解答过程)
答案

(1)

1
2
+
1
6
+
1
12
+
1
30
+
1
42
+
1
56
+
1
72
+
1
90

=1-

1
2
+
1
2
-
1
3
+
1
3
-
1
4
+
1
4
-
1
5
+
1
5
-
1
6
+
1
6
-
1
7
+
1
7
-
1
8
+
1
8
-
1
9
+
1
9
-
1
10

=1-

1
10

=

9
10

(2)

1
1×3
+
1
3×5
+
1
5×7
+…+
1
99×101

=

1
2
×(1-
1
3
)+
1
2
×(
1
3
-
1
5
)+
1
2
×(
1
5
-
1
7
)+…+
1
2
×(
1
99
-
1
101
),

=

1
2
×(1-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
+
1
99
-
1
101
),

=

1
2
×(1-
1
101
),

=

1
2
×
100
101

=

50
101

(3)

1
1×4
+
1
4×7
+
1
7×10
+…+
1
19×22

=

1
3
×(1-
1
4
)+
1
3
×(
1
4
-
1
7
)+…+
1
3
×(
1
19
-
1
22
),

=

1
3
×(1-
1
4
+
1
4
-
1
7
+…+
1
19
-
1
22
),

=

1
3
×(1-
1
22
),

=

1
3
×
21
22

=

7
22

故答案为:

9
10
50
101

填空题
问答题 简答题