问题
选择题
若向量
|
答案
∵
+a
+b
=c
,∴(0
+a
+b
)2=c
2+a
2+b
2+2c
•a
+2b
•b
+2c
•a
=c
2=0,0
∴2(
•a
+b
•b
+c
•a
)=-(|c
|2+|a
|2+|b
|2)=-(32+12+42)=-26,c
∴
•a
+b
•b
+c
•c
=-13.a
故选:C.
若向量
|
∵
+a
+b
=c
,∴(0
+a
+b
)2=c
2+a
2+b
2+2c
•a
+2b
•b
+2c
•a
=c
2=0,0
∴2(
•a
+b
•b
+c
•a
)=-(|c
|2+|a
|2+|b
|2)=-(32+12+42)=-26,c
∴
•a
+b
•b
+c
•c
=-13.a
故选:C.