问题 解答题
我们可以证明:已知sinθ=t(|t|≤1),则sin
θ
2
至多有4个不同的值.
(1)当t=
3
2
时,写出sin
θ
2
的所有可能值;
(2)设实数t由等式log
1
2
2
(t+1)+a•log
1
2
(t+1)+b=0
确定,若sin
θ
2
总共有7个不同的值,求常数a、b的取值情况.
答案

(1)由题意得:sinθ=

3
2
⇒cosθ=±
1
2

∴1-2sin2

θ
2
=
1
2
或1-2sin2
θ
2
=-
1
2

解得:sin

θ
2
=
3
2
sin
θ
2
=-
3
2
sin
θ
2
=
1
2
sin
θ
2
=-
1
2

(2)令u=log

1
2
(t+1),原方程变为u2+au+b=0,

要使sin

θ
2
有七个不同的值,必须sinθ有两个不同的值,且t1=0,t2∈(-1,0)∪(0,1),

从而b=0,a∈(-∞,0)∪(0,1),

此时,u1=log

1
2
(t1+1)=0,u2=log
1
2
(t2+1)∈(-1,0)∪(0,+∞)

问答题 简答题
单项选择题