问题
计算题
如图所示,两块相同平板P1、P2置于光滑水平面上,质量均为m。P2的右端固定一轻质弹簧,左端A与弹簧的自由端B相距L。物体P置于P1的最右端,质量为2m且可以看作质点。P1与P以共同速度v0向右运动,与静止的P2发生碰撞,碰撞时间极短,碰撞后P1与P2粘连在一起,P压缩弹簧后被弹回并停在A点(弹簧始终在弹性限度内)。P与P2之间的动摩擦因数为μ,求:
(1)P1、P2刚碰完时的共同速度v1和P的最终速度v2;
(2)此过程中弹簧最大压缩量x和相应的弹性势能Ep。
答案
(1) ,
(2)
,
(1) P1、P2碰撞过程,动量守恒,,解得
。
对P1、P2、P组成的系统,由动量守恒定律 ,,解得
(2)当弹簧压缩最大时,P1、P2、P三者具有共同速度v2,对P1、P2、P组成的系统,从P1、P2碰撞结束到P压缩弹簧后被弹回并停在A点,用能量守恒定律
解得
对P1、P2、P系统从P1、P2碰撞结束到弹簧压缩量最大,用能量守恒定律
最大弹性势能
注意三个易错点:碰撞只是P1、P2参与;碰撞过程有热量产生;P所受摩擦力,其正压力为2mg
【考点定位】碰撞模型、动量守恒定律、能量守恒定律、弹性势能、摩擦生热。中档题