问题
填空题
已知
|
答案
∵
=(e1
,-1),3
=(e2
,1 2
),3 2
∴若
=a
+(t2-3)•e1
=(e2
,-1)+(3
t2-1 2
,3 2
t2-3 2
)=(3 3 2
t2-1 2
+3 2
,3
t2-3 2
-1),3 3 2
=-k•b
+t•e1
=(-e2
k,k)+(3
t,1 2
t)=(3 2
t-1 2
k,3
t+k),3 2
∵
⊥a
,b
∴
•a
=(b
t2-1 2
+3 2
)•(3
t-1 2
k)+(3
t2-3 2
-1)•(3 3 2
t+k)3 2
=
t3-1 4
t+3 4
t-3 2
kt2+3 2
k-3k+3 3 2
t3-3 4
t-9 4
t+3 2
kt2-3 2
k-k3 3 2
=t3-3t-4k=0,
∵t3-3t-4k=0,
∴k=
,t3-3t 4
∴
=k+t2 t
=
+t2t3-3t 4 t
t2+t-1 4
=3 4
(t+2)2-1 4
,7 4
∴
的最小值为-k+t2 t
.7 4
故答案为:t3-3t-4k=0,-
.7 4