问题
填空题
在△ABC中,∠A=90°,AB=1,AC=2,设点P,Q满足
|
答案
∵
=BQ
-AQ
,AB
=(1-λ)AQ
,∴AC
=(1-λ)BQ
-AC AB
又∵
=CP
-AP
,AC
=λAP AB
∴
=λCP
-AB AC
∵∠A=90°,得
⊥AB
,即AC
•AB
=0AC
∴
•BQ
=-2,即[(1-λ)CP
-AC
]•(λAB
-AB
)=-2AC
展开并化简得,-(1-λ)
2+[λ(1-λ)+1]AC
•AB
-λAC
2=-2AB
∵|
|=1,|AC|=2,AB
•AB
=0AC
∴-(1-λ)×4-λ×1=-2,解之得λ=2 3
故答案为:2 3