问题 选择题
命题p:“方程
x2
k+5
+
y2
k-2
=1
表示的曲线是双曲线”,命题q:“函数y=(2k-1)x是R 上的增函数.”若复合命题“p∧q”与“p∨q”一真一假,则实数k的取值范围为(  )
A.(1,2)B.(5,2)C.(5,1)U(2,+∞)D.(-5,1]U[2,+∞)
答案

若方程

x2
k+5
+
y2
k-2
=1表示的曲线是双曲线,则(k+5)(k-2)<0,解得-5<k<2,即p:-5<k<2.

若函数y=(2k-1)x是R 上的增函数,则2k-1>1,解得k>1,即q:k>1.

因为“p∧q”与“p∨q”一真一假,则p,q也是一真一假.

若p真q假,则

-5<k<2
k≤1
,即-5<k≤1.

若p假q真,则

k≤-5或k≥2
k>1
,即k≥2.

所以实数k的取值范围为(-5,1]U[2,+∞).

故选D.

选择题
单项选择题