问题
填空题
向量
|
答案
∵
+a
+b
=0,∴c
=-(c
+a
)b
∵(
-a
)⊥b
,∴(c
-a
)•b
=0,c
即(
-a
)•[ -(b
+a
)]=0,∴|b
|=|a
|,b
∴M=
+|
|a |
|b
+|
|b |
|c
+=1+|
|c |
|a
+|
|b |
|c
=1+|
|c |
|a
+|
|b |
|
+ a b
=1+|
+a
|b |
|a
+2 2
=1+2 3 2 2
故答案为1+3 2 2