问题
选择题
在平面向量上定义运算⊗:(m,n)⊗(p,q)=(mq,np).任意
|
答案
∵|
⊗b
|=|(x2y1,x1y2)|=a
,(x2y1)2+(x1y2)2
|
⊗a
|=|(x1y2,x2y1)|=b
,故A正确.(x2y1)2+(x1y2)2
∵(
⊗a
)⊗b
=(x1y2,x2y1)⊗(z1,z2)=(x1y2•z2,x2y1•z1),c
⊗(b
⊗c
)=(y1,y2)⊗(x2z1,x1z2)=(x1y1z2,x2y2z1),a
∴|(
⊗a
)⊗b
|≠|c
⊗(b
⊗c
)|,故B不正确.a
再由
⊗(b
⊗a
)=(y1,y2)⊗(x1z2,x2z1)=(x1y1z2,x2y2z1),c
∴(
⊗a
)⊗b
=c
⊗(b
⊗a
),∴|(c
⊗a
)⊗b
|=|c
⊗(b
⊗a
)|,故C正确.c
同理
⊗(c
⊗a
)=(z1,z2)⊗(x1y2,x2y1)=(x2y1z1,x1y2z2),b
∴|(
⊗a
)⊗b
|=|c
⊗(c
⊗a
)|,故D正确.b
综上,只有B不正确,
故选B.