问题
解答题
已知函数f(x)=
(1)求函数f(x)的定义域; (2)求函数f(x)的最小正周期并判断其奇偶性; (3)求函数f(x)的单调区间和最值. |
答案
(1)由1+cosx≠0得:x≠2kπ+π,k∈Z,
∴数f(x)的定义域为{x|x∈R且x≠2kπ+π,k∈Z}.
(2)依题意得:f(x)=sin2x+cosx+1 cosx+1
=1-cos2x+cosx+1 cosx+1
=(1+cosx)(1-cosx)+(cosx+1) cosx+1
=1-cosx+1
=2-cosx,
∴f(x)的最小正周期T=2π.
∵f(x)的定义域关于原点对称,且f(-x)=2-cos(-x)=2-cosx=f(x),
∴f(x)是偶函数;
(3)由于cosx≠-1,则-1<cosx≤1,
∴1≤2-cosx<3,即f(x)∈[1,3),当cosx=1,即x=2kπ(k∈Z)时,f(x)取得最小值1,
∴函数f(x)=2-cosx的单调增区间为[2kπ,2kπ+π)(k∈Z),单调减区间为(2kπ-π,2kπ](k∈Z).