问题
填空题
若A+B=
|
答案
cos2A+cos2B
=
(2cos2A-1)+1 2
+1 2
(2cos2B-1)+1 2 1 2
=
cos2A+1 2
cos2B+11 2
∵A+B=2π 3
∴B=
-A2π 3
∴
cos2A+1 2
cos2B+11 2
=
cos2A+1 2
cos(1 2
-2A)+14π 3
=
cos2A+1 2
[(-1 2
cos2A)-1 2
sin2A]+13 2
=
(1 2
cos2A-1 2
sin2A)+13 2
=
cos(2A+1 2
)+1π 3
即cos2A+cos2B=
cos(2A+1 2
)+1π 3
∵-1≤cos(2A+
)≤1π 3
∴
≤1 2
cos(2A+1 2
)+1≤π 3 3 2
即cos2A+cos2B的取值范围为[
,1 2
]3 2
故答案为:[
,1 2
]3 2