问题
解答题
已知圆C:x2+y2+2x+a=0上存在两点关于直线l:mx+y+1=0对称. (I)求m的值; (Ⅱ)直线l与圆C交于A,B两点,
|
答案
(I)x2+y2+2x+a=0⇒(x+1)2+y2=1-a,圆心(-1,0).
∵圆C:x2+y2+2x+a=0上存在两点关于直线l:mx+y+1=0对称,∴直线过圆心,
∴-m+0+1=0⇒m=1,
故m的值为1.
(II)设A(x1,y1),B(x2,y2)
•OA
=x1x2+y1y2=2x1x2+x1+x2+1OB
⇒2x2+4x+1+a=0,x+y+1=0 x2+y2+2x+a=0
根据韦达定理:x1+x2=-2;x1x2=
.1+a 2
∴1+a-2+1=-3⇒a=-3.
∴圆C的方程是:(x+1)2+y2=4.