(20分)如图所示,de和fg是两根足够长且固定在竖直方向上的光滑金属导轨,导轨间距离为L,电阻忽略不计。在导轨的上端接电动势为E,内阻为r的电源。一质量为m、电阻为R的导体棒ab水平放置于导轨下端e、g处,并与导轨始终接触良好。导体棒与金属导轨、电源、开关构成闭合回路,整个装置所处平面与水平匀强磁场垂直,磁场的磁感应强度为B,方向垂直于纸面向外。已知接通开关S后,导体棒ab由静止开始向上加速运动,求:
(1)导体棒ab刚开始向上运动时的加速度以及导体棒ab所能达到的最大速度;
(2)导体棒ab达到最大速度后电源的输出功率;
(3)分析导体棒ab达到最大速度后的一段时间△t内,整个回路中能量是怎样转化的?并证明能量守恒
(1)
(2)P
(3)电源的电能转化为导体棒的机械能和电路中产生的焦耳热之和。
(1)(10分)导体棒ab刚开始运动时的速度为零,由欧姆定律
(1分)
导体棒ab受安培力 (1分)
牛顿第二定律 (1分)
导体棒ab开始运动时的加速度 (1分)
设导体棒ab向上运动的最大速度为,当导体棒所受重力与安培力相等时,达到最大速度,回路电流为
(2分)
由欧姆定律 (2分)
得 (2分)
(2)(4分)电源的输出功率 (2分)
P (2分)
(3)(6分)电源的电能转化为导体棒的机械能和电路中产生的焦耳热之和(1分)
△t时间内:电源的电能 △E电=E△t
△t (1分)
导体棒ab增加的机械能
△E机= mg△t = mg
△t (1分)
电路中产生的焦耳热Q=△t=
(R+r)△t (1分)
△t时间内,导体棒ab增加的机械能与电路中产生的焦耳热之和为△E’
△E’=△E机 + Q (1分)
△E’=mg△t +
(R+r)△t
整理得 △E’△t (1分)
由此得到△E电=△ E’,回路中能量守恒