问题 解答题
已知sinα=
4
5
,α∈(0,π),cosβ=-
5
13
,β是第三象限角,求cos(α-β)的值.
答案

①当α∈[

π
2
,π)时,且sinα=
4
5
,得cosα=-
1-sin2a
=-
1-(
4
5
)
2
=-
3
5

又由cosβ=-

5
13
,β是第三象限角,得sinβ=-
1-cos2β
=-
1-(-
5
13
)
2
=-
12
13

所以cos(α-β)=cosαcosβ+sinαsinβ=(-

3
5
)×(-
5
13
)+
4
5
×(-
12
13
)=-
33
65.

②当α∈(0,

π
2
)时,且sinα=
4
5
,得cosα=
1-sin2a
=
1-(
4
5
)
2
=
3
5

又由cosβ=-

5
13
,β是第三象限角,得sinβ=-
1-cos2β
=-
1-(-
5
13
)
2
=-
12
13

所以cos(α-β)=cosαcosβ+sinαsinβ=

3
5
×(-
5
13
)+
4
5
×(-
12
13
)=-
63
65

问答题
单项选择题