问题
解答题
求证:tan2θ(1+cos2θ)=1-cos2θ.
答案
证明:∵等式左边=tan2θ(1+cos2θ)
=
(1+2cos2θ-1)sin2θ cos2θ
=
•2cos2θsin2θ cos2θ
=2sin2θ,
等式右边=1-cos2θ=1-(1-2sin2θ)=2sin2θ,
∴左边=右边,
故原式成立.
求证:tan2θ(1+cos2θ)=1-cos2θ.
证明:∵等式左边=tan2θ(1+cos2θ)
=
(1+2cos2θ-1)sin2θ cos2θ
=
•2cos2θsin2θ cos2θ
=2sin2θ,
等式右边=1-cos2θ=1-(1-2sin2θ)=2sin2θ,
∴左边=右边,
故原式成立.