问题
解答题
已知函数f(x)=
( I)求f(x)的单调递增区间; (Ⅱ)若f(B+C)=1,a=
|
答案
(I)因为f(x)=
3 |
x |
2 |
x |
2 |
x |
2 |
1 |
2 |
=
| ||
2 |
1+cosx |
2 |
1 |
2 |
=
| ||
2 |
=sin(x+
π |
6 |
又y=sinx的单调递增区间为(2kπ-
1 |
2 |
1 |
2 |
所以令2kπ-
1 |
2 |
π |
6 |
1 |
2 |
解得2kπ-
2π |
3 |
π |
3 |
所以函数f(x)的单调增区间为(2kπ-
2π |
3 |
π |
3 |
(Ⅱ) 因为f(B+C)=1所以sin(B+C+
π |
6 |
又B+C∈(0,π),B+C∈(
π |
6 |
7π |
6 |
所以B+C+
π |
6 |
1 |
2 |
∴B+C=
π |
3 |
∴A=
2π |
3 |
由正弦定理
sinB |
b |
sinA |
a |
把a=
3 |
1 |
2 |
又b<a,B<A,所以B=
π |
6 |
π |
6 |