问题 解答题
已知
a
b
是两个非零向量,且满足|
a
|=|
b
|=|
a
-
b
|,求:
(1)
a
a
+
b
的夹角;
(2)求
|
a
+
b
|2
a
b
的值.
答案

(1)由条件|

a
|=|
b
|=|
a
-
b
|,可得
a
2
=
b
2
=
a
2
+
b
2
-2
a
b
,∴
a
b
=
a
2
2
=
b
2
2
,∴|
a
+
b
|=
(
a
+
b
)
2
=
3
|
a
|.

∴cos<

a
a
+
b
>=
a
•(
a
+
b
)
|
a
|•|
a
+
b
|
=
a
2
+
a
b
|
a
|•
3
|
a
|
=
3
2
,∴<
a
a
+
b
>=30°.

(2)

|
a
+
b
|2
a
b
=
a
2
+2
a
b
+
b
2
a
b
=
3
a
2
a
2
2
=6.

判断题
问答题 简答题