问题
填空题
在数列{an}中,如果对任意的n∈N*,都有
①若数列{Fn}满足F1=1,F2=1,Fn=Fn-1+Fn-2(n≥3),则该数列不是比等差数列; ②若数列{an}满足an=(n-1)•2n-1,则数列{an}是比等差数列,且比公差λ=2; ③等比数列一定是比等差数列,等差数列不一定是比等差数列; ④若{an}是等差数列,{bn}是等比数列,则数列{anbn}是比等差数列. 其中所有真命题的序号是______. |
答案
数列{Fn}满足F1=1,F2=1,F3=2,F4=3,F5=5,
-F3 F2
=1,F2 F1
-F4 F3
=-F3 F2
≠1,则该数列不是比等差数列,1 2
故①正确;
若数列{an}满足an=(n-1)•2n-1,则
-an+2 an+1
=an+1 an
-(n+1)•2n+1 n•2n
=n•2n (n-1)•2n-1
不为定值,即数列{an}不是比等差数列,-2 (n-1)•n
故②错误;
等比数列
-an+2 an+1
=0,满足比等差数列的定义,若等差数列为an=n,则an+1 an
-an+2 an+1
=an+1 an
不为定值,即数列{an}不是比等差数列,-1 (n-1)•n
故③正确;
如果{an}是等差数列,{bn}是等比数列,设an=n,bn=2n,则
-an+2 an+1
=不为定值,不满足比等差数列的定义,an+1 an
故④不正确;
故答案为:①③