问题
填空题
在数列{an}中,如果对任意的n∈N*,都有
①若数列{Fn}满足F1=1,F2=1,Fn=Fn-1+Fn-2(n≥3),则该数列不是比等差数列; ②若数列{an}满足an=(n-1)•2n-1,则数列{an}是比等差数列,且比公差λ=2; ③“等差数列是常数列”是“等差数列成为比等差数列”的充分必要条件; ④数列{an}满足:a1=
|
答案
数列{Fn}满足F1=1,F2=1,F3=2,F4=3,F5=5,
-F3 F2
=1,F2 F1
-F4 F3
=-F3 F2
≠1,则该数列不是比等差数列,1 2
故①正确;
若数列{an}满足an=(n-1)•2n-1,则
-an+2 an+1
=an+1 an
不为定值,即数列{an}不是比等差数列,-2 (n-1)•n
故②错误;
等比数列
-an+2 an+1
=0,满足比等差数列的定义,若等差数列为an=n,则an+1 an
-an+2 an+1
=an+1 an
不为定值,即数列{an}不是比等差数列,故③正确;-1 (n-1)•n
数列{an}的通项公式为:an=
,则a1=n•3n 3n-1
,a2=3 2
,a3=9 4
,a4=81 26
,81 20
-a3 a2
=-a2 a1
,3 26
-a4 a3
=-a3 a2
≠-11 130
,不满足比等差数列的定义,故④不正确;3 26
故答案为:①③