问题 填空题
有下列命题:
①G=
ab
(G≠0)是a,G,b成等比数列的充分非必要条件;
②若角α,β满足cosαcosβ=1,则sin(α+β)=0;
③若不等式|x-4|+|x-3|<a的解集非空,则必有a≥1;
④函数y=sinx+sin|x|的值域是[-2,2].
其中正确命题的序号是______.(把你认为正确的命题的序号都填上)
答案

当G=

ab
(G≠0)时,a,b≠0,由等比数列的定义,可得a,G,b成等比数列,但a,G,b成等比数列时,G=±
ab
,故①正确;

若角α,β满足cosαcosβ=1,则cosα=cosβ=1,或cosα=cosβ=-1,即α,β的终边同时落在x轴的正半轴上或负半轴上,则sin(α+β)=0,故②正确;

∵y=|x-4|+|x-3|≥1,故不等式|x-4|+|x-3|<a的解集非空,则a≥1,故③正确;

当x≥0时,函数y=sinx+sin|x|=2sinx值域是[-2,2];当x<0时,函数y=sinx+sin|x|=0恒成立,故④正确;

故答案为:①②③④

判断题
单项选择题