问题
解答题
在△ABC中,满足
(1)若|
(2)若|AB|=2,|
|
答案
(1)设|
|=|AB
|=a,cos<AC
+2AB
,AC
>=AB
=(
+2AB
)•AC AB |
+2AB
| |AC
|AC
= a2+a2
a7a2 2 7 7
(2)因为<
,AB
> =60°,|AB|=2,|AC
|=2BC
,由余弦定理知:|AC|=43
M是AB的中点,所以AM=1,因为D是AC上一点,设AD=x,则DC=4-x,所以
•DB
=(DM
+DA
) •(AB
+DA
)=AM
2+ DA
•DA
+DM
•AB
+DA
•AB AM
=x2-
x-1 2
×2x+2=(x-1 2
)2+3 4 23 16
所以当x=
∈(0,4)时,即D距A点3 4
处,3 4
•DB
取到最小,最小值为DM
.23 16