如图所示,两根间距为L的金属导轨MN和PQ,电阻不计,左端弯曲部分光滑,水平部分导轨与导体棒间的滑动摩擦因数为μ,水平导轨左端有宽度为d、方向竖直向上的匀强磁场Ⅰ,右端有另一磁场Ⅱ,其宽度也为d,但方向竖直向下,两磁场的磁感强度大小均为B0,相隔的距离也为d.有两根质量为m、电阻均为R的金属棒a和b与导轨垂直放置,b棒置于磁场Ⅱ中点C、D处.现将a棒从弯曲导轨上某一高处由静止释放并沿导轨运动下去.
(1)当a棒在磁场Ⅰ中运动时,若要使b棒在导轨上保持静止,则a棒刚释放时的高度应小于某一值h0,求h0的大小;
(2)若将a棒从弯曲导轨上高度为h(h<h0)处由静止释放,a棒恰好能运动到磁场Ⅱ的左边界处停止,求a棒克服安培力所做的功;
(3)若将a棒仍从弯曲导轨上高度为h(h<h0)处由静止释放,为使a棒通过磁场Ⅰ时恰好无感应电流,可让磁场Ⅱ的磁感应强度随时间而变化,将a棒刚进入磁场Ⅰ的时刻记为t=0,此时磁场Ⅱ的磁感应强度为B0,试求出在a棒通过磁场Ⅰ的这段时间里,磁场Ⅱ的磁感应强度随时间变化的关系式.
(1)因为a棒进入磁场Ⅰ后做减速运动,所以只要刚进入时b棒不动,b就可以静止不动.对a棒:由机械能守恒:mgh0=
m02,1 2
对回路:ε=BLv0,I=ε 2R
对b棒:BIL=μmg
联立解得:h0=2μ2m2gR2 B4L4
(2)由全过程能量守恒与转化规律:mgh=μmg2d+W克A
解得:W克A=mgh-μmg2d
(3)a棒通过磁场Ⅰ时恰好无感应电流,说明感应电动势为零,根据法拉第电磁感应定律ε=
,在△t≠0的前提下,△Φ=0即Φ保持不变△Φ △t
对a棒:由机械能守恒:mgh=
mv21 2
a棒进入磁场Ⅰ后,由牛顿第二定律得:a=μg
经过时间t,a棒进入磁场Ⅰ的距离为x=vt-
at21 2
磁通量Φ=B0(d-x)L-B
Ld 2
又最初磁通量为Φ0=B0dL-B0
L=d 2
B0dL=Φ1 2
联立解得:B=B0-
(2B0 d
-2ght
μgt2).1 2
答:(1)h0的大小为
.2μ2m2gR2 B4L4
(2)a棒克服安培力所做的功为mgh-μmg2d.
(3)磁场Ⅱ的磁感应强度随时间变化的关系式B=B0-
(2B0 d
-2ght
μgt2).1 2