问题 填空题
已知下列四个命题:
①若tanθ=2,则sin2θ=
4
5

②函数f(x)=lg(x+
1+x2
)
是奇函数;
③“a>b”是“2a>2b”的充分不必要条件;
④在△ABC中,若sinAcosB=sinC,则△ABC中是直角三角形.
其中所有真命题的序号是______.
答案

∵tanθ=2,则sin2θ=

2sinθcosθ
sin2θ+cos2θ
=
2tanθ
tan2θ+1
=
4
5
,故①正确;

函数f(x)=lg(x+

1+x2
)的定义域为R,且f(x)+f(-x)=lg(x+
1+x2
)
+lg(-x+
1+x2
)
=lg(1+x2-x2)=lg1=0,故f(x)是奇函数,即②正确;

∵y=2X在R上是单调递增函数,故“a>b”是“2a>2b”的充要条件,故③错误;

在△ABC中,若sinAcosB=sinC=sin(A+B)=sinAcosB+cosAsinB,cosAsinB=0,由sinB≠0得cosA=0,A=90°,即则△ABC中是直角三角形,故④正确.

故答案为①②④

选择题
单项选择题