问题 填空题
有下列命题:
①命题“∃x∈R,使得x2+1>3x”的否定是“∀x∈R,都有x2+1≤3x”;
②设p、q为简单命题,若“p∨q”为假命题,则“¬p∧¬q为真命题”;
③若p(x)=ax2+2x+1>0,则“∀x∈R,p(x)是真命题”的充要条件为 a>1;
④若函数f(x)为R上的奇函数,当x≥0,f(x)=3x+3x+a,则f(-2)=-14;
⑤不等式
x+5
(x-1)2
≥2
的解集是[-
1
2
,3]

其中所有正确的说法序号是______.
答案

①已知命题“∃x∈R,使得x2+1>3x”对其进行否定:“∀x∈R,都有x2+1≤3x”,故①正确;

②若“p∨q”为假命题,可得p与q都为假命题,则¬p与¬q都为真命题,则“¬p∧¬q为真命题”,故②正确;

③“∀x∈R,p(x)=ax2+2x+1>0,可得△<0,得4-4a<0,得a>1,故③正确;

④函数f(x)为R上的奇函数,可得f(0)=0,推出a=-1,得x≥0,f(x)=3x+3x-1,

令x<0得-x>0,f(x)为奇函数,f(-x)=-f(x),f(-x)=-f(x)=3-x-3x-1,f(x)=-3-x+3x+1,

f(-2)=-32-6+1=-14;

⑤不等式

x+5
(x-1)2
≥2,
x+5
(x-1)2
-
2(x-1)2
(x-1)2
≥0
,可得
(2x+1)(x-3)
(x-1)2
≤0
,从而求解出-
1
2
≤x≤3且x≠1;

故⑤错误;

故答案为①②③④;

问答题 简答题
单项选择题