如图所示,倾角θ=30°、宽度L=1m的足够长为U形平行光滑金属导轨固定在磁感应强度B=1T、范围充分大的匀强磁场中,磁场方向垂直导轨平面斜向上.现用一平行导轨的牵引力F,牵引一根质量m=0.2kg、电阻R=1Ω、垂直导轨的金属棒ab,由静止沿导轨向上移动(ab棒始终与导轨接触良好且垂直,不计导轨电阻及一切摩擦).问:
(1)若牵引力为恒力,且F=9N,求金属棒达到的稳定速度v1
(2)若牵引力功率恒为72W,求金属棒达到的稳定速度v2
(3)若金属棒受向上拉力在斜面导轨上达到某一速度时,突然撒力,此后金属棒又前进了0.48m,其间,即从撒力至棒速为0时止,金属棒发热1.12J.问撒力时棒速v3多大?
(1)恒力拉动到匀速时:
由平衡方程:F=mgsinθ+BIL
9=mgsinθ+B2L2v1 R
解得υ1=8m/s
(2)恒功率拉动到匀速时:
平衡方程,F=
=mgsinθ+P v2 B2L2v2 R
得υ2=8m/s (υ2=-9m/s舍去)
(3)设撤力后棒向前滑行的最大距离为S,此过程发热Q,则
mυ32=mgSsinθ+Q1 2
解得:υ3=4m/s
答:(1)若牵引力为恒力,且F=9N,则金属棒达到的稳定速度8m/s;
(2)若牵引力功率恒为72W,则金属棒达到的稳定速度8m/s;
(3)若金属棒受向上拉力在斜面导轨上达到某一速度时,突然撒力,此后金属棒又前进了0.48m,其间,即从撒力至棒速为0时止,金属棒发热1.12J.则撒力时棒速v3为4m/s.