问题 填空题
给出下列几个命题:
①若函数f(x)的定义域为R,则g(x)=f(x)+f(-x)一定是偶函数;
②若函数f(x)是定义域为R的奇函数,对于任意的x∈R都有f(x)+f(2-x)=0,则函数f(x)的图象关于直线x=1对称;
③已知x1,x2是函数f(x)定义域内的两个值,当x1<x2时,f(x1)>f(x2),则f(x)是减函数;
④设函数y=
1-x
+
x+3
的最大值和最小值分别为M和m,则M=
2
m

⑤若f(x)是定义域为R的奇函数,且f(x+2)也为奇函数,则f(x)是以4为周期的周期函数.
其中正确的命题序号是______.(写出所有正确命题的序号)
答案

∵g(x)=f(x)+f(-x),∴g(-x)=f(-x)+f(x)=g(x),故①g(x)是偶函数为真命题,

∵定义域为R的奇函数f(x),对于任意的x∈R都有f(x)+f(2-x)=0,则函数关于点(1,0)成中心对称,故②函数f(x)的图象关于直线x=1对称为假命题;

若f(x)是减函数,则要求任意x1<x2,均有f(x1)>f(x2),由于③中x1,x2是函数f(x)定义域内的两个值,不具有任意性,故③为假命题;

函数y=

1-x
+
x+3
的定义域为[-3,1],且函数y=
1-x
+
x+3
在[-3,-1]上为增函数,在[-1,1]上为减函数,故m=2,M=2
2
,∴M=
2
m
,故④正确

若f (x)是定义在R上的奇函数,且f (x+2)也为奇函数,则f (x)是以4为周期的周期函数,故⑤为真命题.

故答案为:①④⑤

问答题 简答题
问答题