问题 问答题

如图(甲)所示,一对足够长平行光滑轨道放置在水平面上,两轨道间距l=0.5m,左侧接一阻值为R=1的电阻;有一金属棒静止地放在轨道上,与两轨道垂直,金属棒及轨道的电阻皆可忽略不计,整个装置处于垂直轨道平面竖直向下的匀强磁场中.t=0时,用一外力F沿轨道方向拉金属棒,使棒以加速度a=0.2m/s2做匀加速运动,外力F与时间t的关系如图(乙)所示.

(1)求金属棒的质量m

(2)求磁感强度B

(3)当力F达到某一值时,保持F不再变化,金属棒继续运动3秒钟,速度达到1.6m/s且不再变化,测得在这3秒内金属棒的位移s=4.7m,求这段时间内电阻R消耗的电能.

答案

由图(乙)知F=0.1+0.05t

(1)F=F-F=(0.1+0.05t)-

B2l2v
R
=ma,

考虑t=0时,v=at=0 

即 F=0.1N

牛顿第二定律得:m=

F
a
=
0.1
0.2
kg=0.5kg

(2)棒做匀加速运动,

F=(0.1+0.05t)-

B2l2at
R
=0.1+(0.05-
B2l2a
R
)t
=常数

所以0.05-

B2l2a
R
=0,

解得:B=

0.05R
l2a
=
0.05×1
0.52×0.2
=1T

(3)F变为恒力后,金属棒做加速度逐渐减小的变加速运动,经过3秒钟,速度达到最大vm=1.6m/s,此后金属棒做匀速运动.

vm=1.6m/s时,F=0

F=F=

B2l2vm
R
=
12×0.52×1.6
1
N=0.4N,

将F=0.4N代入F=0.1+0.05t,求出变加速运动的起始时间为:t=6s,

该时刻金属棒的速度为:v6=at═0.2×6=1.2m/s;

这段时间内电阻R消耗的电能:E=WF-△Ek=FS-

1
2
m(
v2m
-
v26
)=0.4×4.7-
1
2
×0.5(1.62-1.22)=1.6J

答:(1)则金属棒的质量0.5kg;

(2)则磁感强度1T;

(3)当力F达到某一值时,保持F不再变化,金属棒继续运动3秒钟,速度达到1.6m/s且不再变化,测得在这3秒内金属棒的位移s=4.7m,则这段时间内电阻R消耗的电能为1.6J.

问答题
单项选择题