问题 解答题
已知A(3,0),B(0,3)C(cosα,sinα),O为原点.
(1)若
OC
AB
,求tanα的值;
(2)若
AC
BC
,求sin2α的值.
(3)若|
OA
+
OC
|=
13
且α∈(0,π),求
OB
OC
的夹角
答案

(1)∵A(3,0),B(0,3),C(cosα,sinα),

OC
=(cosα,sinα),
AB
=(-3,3),

OC
AB
,∴3cosα+3sinα=0,解得tanα=-1

(2)由题意得,

AC
=(coaα-3,sinα),
BC
=(coaα,sinα-3),

AC
BC
,∴coaα(coaα-3)+sinα(sinα-3)=0,

1-3(sinα+coaα)=0,即sinα+coaα=

1
3

两边平方后得,sin2α=-

8
9

(3)由题意得,

OA
=(3,0),
OC
=(cosα,sinα),

OA
+
OC
=(coaα+3,sinα),由|
OA
+
OC
|=
13
得,

(cosα+3)2+sin2α=13,即cosα=

1
2
,则α=
π
3

cos<

OB
OC
=
OB
OC
|
OB
||
OC
|
=
3sinα
3
=
3
2

则所求的向量的夹角是

π
6

填空题
判断题