问题 计算题

如图所示,圆管构成的半圆形轨道竖直固定在水平地面上,轨道半径为R,MN为直径且与水平面垂直,直径略小于圆管内径的小球A以某一速度冲进轨道,到达半圆轨道最高点M时与静止于该处的质量与A相同的小球B发生碰撞,碰后两球粘在一起飞出轨道,落地点距N 为2R,重力加速度为g,忽略圆管内径,空气阻力及各处摩擦均不计,求:

(1) 粘合后的两球从飞出轨道到落地的时间t;

(2) 小球A冲进轨道时速度v的大小。

答案

解:(1)粘合后的小球A 和小球B ,飞出轨道后做平抛运动,竖直方向分运动为自由落体运动,有    ①    

解得:     ②    

(2)设球A的质量为m,碰撞前速度大小为,把求A冲进轨道最点处的重力势能定为0,由机械能守恒定律知:      ③    

设碰撞后粘在一起的两球的速度为,由动量守恒定律知:    ④    

 飞出轨道后做平抛运动,水平方向分运动为匀速直线运动,有     ⑤  

  联立②③④⑤几式可得:    ⑥ 

单项选择题
问答题 简答题