如图所示,两根足够长的光滑平行金属导轨MN、PQ间距离L=0.5m,其电阻不计,两导轨及其构成的平面与水平面成30°角.完全相同的两金属棒ab、cd分别垂直导轨放置,且都与导轨始终有良好接触.已知两金属棒质量均为m=0.02kg,电阻相等且不可忽略.整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度B=0.2T,金属棒ab在平行于导轨向上的力F作用下,沿导轨向上匀速运动,而金属棒cd恰好能够保持静止.取g=10m/s2,求:
(1)通过金属棒cd的电流大小、方向;
(2)金属棒ab受到的力F大小;
(3)若金属棒cd的发热功率为0.1W,金属棒ab的速度.
(1)金属棒cd受到的安培力:Fcd=BIL,
金属棒cd静止处于平衡状态,由平衡条件得:Fcd=mgsin30°,
即:BIL=mgsin30°,电流为I=
=mgsin37° BL
=1A;0.02×10×0.5 0.2×0.5
由右手定则可知,通过ab棒的电流由a流向b,则金属棒cd中的电流方向由d至c;
(2)金属棒ab与cd受到的安培力大小相等:Fab=Fcd=BIL=0.2×1×0.5=0.1N
金属棒ab做匀速直线运动,处于平衡状态,由平衡条件得:
F=mgsin30°+Fab=0.02×10×0.5+0.1=0.2N;
(3)金属棒发热功率:P=I2R,
金属棒电阻:R=
=P I2
=0.1Ω,0.1W (1A)2
金属棒ab切割磁感线产生的 感应电动势:E=BLv,
由闭合电路欧姆定律得:I=
=E 2R
,BLv 2R
金属棒的速度:v=
=2IR BL
=2m/s;2×1A×0.1Ω 0.2T×0.5m
答:(1)通过金属棒cd的电流大小为1A,方向:由d流向c;
(2)金属棒ab受到的力F大小为0.2N;
(3)金属棒ab的速度为2m/s.