问题
填空题
已知向量
|
答案
因为
=(1-t,2t-1,0)与a
=(2,t,t),b
-b
=(1+t,1-t,t),a
所以|
-b
|2=(1+t)2+(1-t)2+t2=3t2+2≥2,a
所以|
-b
|=a
≥3t2+2
,2
即当t=0时,|
-b
|的最小值是a
.2
故答案为:
.2
已知向量
|
因为
=(1-t,2t-1,0)与a
=(2,t,t),b
-b
=(1+t,1-t,t),a
所以|
-b
|2=(1+t)2+(1-t)2+t2=3t2+2≥2,a
所以|
-b
|=a
≥3t2+2
,2
即当t=0时,|
-b
|的最小值是a
.2
故答案为:
.2