问题 解答题
已知F为抛物线C:y=x2的焦点,A(x1,y1),B(x2,y2)是抛物线C上的两点,且x1<x2
(1)若
FA
FB
(λ∈R),则λ
为何值时,直线AB与抛物线C所围成的图形的面积最小?该面积的最小值是多少?
(2)若直线AB与抛物线C所围成的面积为
4
3
,求线段AB的中点M的轨迹方程.
答案

(1)由题知,抛物线C的焦点F(0,

1
4
),A(x1
x21
),B(x2
x22
),所以
FA
=(x1
x21
-
1
4
),
FB
=(x2
x22
-
1
4
)

因为

FA
FB
,所以
FA
FB
共线,即

x1(

x22
-
1
4
)-x2(
x21
-
1
4
)=0,

即(x2-x1)(x1x2+

1
4
)=0.

因为x1<x2,所以x1x2=-

1
4
.(2分)

由题设条件x1<x2知,直线AB的斜率k一定存在,且

k=

y2-y1
x2-x1
=
x22
-
x21
x2-x1
=x1+x2.(3分)

设直线AB的方程为y=kx+

1
4
,则直线AB与抛物线C所围的面积

S=

x2x1
(kx+
1
4
-x2)dx=(-
1
3
x3+
k
2
x2+
1
4
x)
|x2x1

=(-

1
3
x32
+
k
2
x22
+
1
4
x2)-(-
1
3
x31
+
k
2
x21
+
1
4
x1)

=-

1
3
(
x32
-
x31
)+
k
2
(
x22
-
x21
)+
1
4
(x2-x1)

=(x2-x1)[-

1
3
(
x22
+x2x1+
x21
)+
k
2
(x2+x1)+
1
4
]

=

(x2+x1)2-4x2x1
[-
1
3
(x2+x1)2+
1
3
x2x1+
k
2
(x2+x1)+
1
4
]

=

k2+1
[-
1
3
k2-
1
3
×
1
4
+
k
2
•k+
1
4
]

=

1
6
(k2+1)
k2+1
1
6

当且仅当k=0,即x1=-x2,即λ=-1时,Smin=

1
6
.(5分)

(2)由题知A(x1,x12),B(x2,x22),且x1<x2,则直线AB的斜率kAB=

y2-y1
x2-x1
=
x21
-
x22
x2-x1
=x1+x2

设直线AB的方程为y-x12=k(x-x1),即y=(x1+x2)x-x1x2

则直线AB与抛物线C所围的面积

S=

x2x1
[(x1+x2)x-x1x2-x2]dx

=(

x1+x2
2
x2-x1x2x-
1
3
x3)
|x2x1
=
1
6
(x2-x1)3

因为S=

4
3
,所以
1
6
(x2-x1)3=
4
3
,得x2-x1=2.(8分)设M(x,y),则x=
x1+x2
2
=x1
+1,

y=

y1+y2
2
=
x21
+
x22
2
=
x21
+2x1+2=(x1+1)2+1,

所以y=x2+1.

故点M的轨迹方程为y=x2+1.(10分)

多项选择题
名词解释