问题 解答题
已知点列An(xn,0)满足:
A0An
A1An+1
=a-1
,其中n∈N,又已知x0=-1,x1=1,a>1.
(1)若xn+1=f(xn)(n∈N*),求f(x)的表达式;
(2)已知点B(
a
,0)
,记an=|BAn|(n∈N*),且an+1<an成立,试求a的取值范围;
(3)设(2)中的数列an的前n项和为Sn,试求:Sn
a
-1
2-
a
答案

(1)∵A0(-1,0),A1(1,0),∴

A0An
A1An+1
=(xn+1)(xn+1-1),

∴(xn+1)(xn+1-1)=a-1,∴xn+1=f(xn)=

xn+a
xn+1

f(x)=

x+a
x+1
.(3分)

(2)∵xn+1=f(xn)=

xn+a
xn+1
,a>1,∴xn>1,∴xn+1>2

BAn
=(xn-
a
,0),∴an=|BAn|=|x n-
a
|

an+1=|x n+1-

a
|=|f(xn)-
a
|=|
xn+a
xn+1
-
a
|=
(
a
-1)
|xn+1|
•|xn-
a
|<
1
2
(
a
-1)•|xn-
a
|=
1
2
(
a
-1)an

∴要使an+1<an成立,只要

a
-1≤2,即1<a≤9

∴a∈(1,9]为所求.(6分)

(3)∵an+1

1
2
(
a
-1)|xn-
a
|<
1
22
(
a
-1)
2
•|x n-1-
a
|<…<
1
2n
(
a
-1)
n
•|x 1-
a
|=
1
2n
(
a
-1)
n+1

an

1
2n-1
(
a
-1)
n
(9分)

Sn=a1+a2+…+an<(

a
-1)+
1
2
(
a
-1)
2
+…+
1
2n-1
(
a
-1)
n
=
(
a
-1)[1-(
a
-1
2
)n]
1-
1
2
(
a
-1)

(11分)

∵1<a≤9,∴0<

a
-1
2
≤1,∴0<(
a
-1
2
)n≤1
(13分)

(
a
-1)[1-(
a
-1
2
)
n
]
1-
1
2
(
a
-1)
a
-1
1-
1
2
(
a
-1)
a
-1
1-(
a
-1)

Sn

a
-1
2-
a
(14分)

单项选择题
单项选择题