问题 填空题
若函数f(x)满足:对于任意x1>0,x2>0都有f(x1)>0,f(x2)>0,且f(x1)+f(x2)<f(x1+x2)成立,则称函数f(x)为“守法函数”.给出下列四个函数:①y=
x
;②y=log2(x+1);③y=2x-1;④y=cosx;其中“守法函数”的所有函数的序号是______.
答案

①若f(x)=

x
,则对于任意x1>0,x2>0都有f(x1)>0,f(x2)>0,f(x1)+f(x2)=
x1
+
x2
,f(x1+x2)=
x1+x2
(
x1
+
x2
)
2
=x1+x2+2
x1x2
x1+x2
,所以f(x1)+f(x2)>f(x1+x2),所以①不是“守法函数”.

②若f(x)=log2(x+1),对于任意x1>0,x2>0都有f(x1)>0,f(x2)>0,设x1=x2=1,则f(x1)+f(x2)=1+1=2,而f(x1+x2)=log23<2,所以f(x1)+f(x2)<f(x1+x2)不成立,所以②不是“守法函数”.

③若f(x)=2x-1,对于任意x1>0,x2>0都有f(x1)>0,f(x2)>0,f(x1)+f(x2)-f(x1+x2)=2x1-1+2x2-1-2x1+x2+1<0,则③是“守法函数”.④若f(x)=cosx,因为f(x)=cosx∈[-1,1],所以任意x1>0,x2>0,f(x1)>0,f(x2)>0不一定成立,所以④不是“守法函数”.

故答案为:③.

选择题
单项选择题