问题
单项选择题
设f(x,y)与ψ(x,y)均为可微函数,且ψ'y(x,y)≠0.已知(x0,y0)是f(x,y)在约束条件ψ(x,y)=0下的一个极值点,下列选项正确的是______.
A.若f'x(x0,y0)=0,则f'y(x0,Y0)=0
B.若f'x(x0,y0)=0,则f'y(x0,Y0)≠0
C.若f'x(x0,y0)≠0,则f'y(x0,Y0)=0
D.若f'x(x0,y0)≠0,则f'y(x0,Y0)≠0
答案
参考答案:D
解析:[考点提示] 二元函数条件极值问题.
[解题分析] 依题意知(x0,y0)是拉格朗日函数F(x,y,λ)=f(x,y)+λψ(x,y)的驻点.即(x0,y0)使得
[*]
因为ψ'y(x0,y0)≠0,所以从(2)式可得[*]代入(1)式得
[*]
即f'x(x0,y0)ψ'y(x0,y0)=ψ'x(x0,y0)f'y(x0,y0).
当f'x(x0,y0)≠0且ψ'y(x0,y0)≠0时,f'x(x0,y0)ψ'y(x0,y0)≠0,所以.
ψ'x(x0,y0)f'y(x0,y0)≠0,从而f'y(x0,y0)≠0.
故选D.