问题 问答题

一根弹性细绳(遵循胡克定律)原长为l,劲度系数为k,将其一端穿过一个光滑小孔O(其在水平地面上的投影点为O’),系在一个质量为m的滑块A上,A放在水平地面上.小孔O离绳固定端的竖直距离为l,离水平地面高度为h(h<mg/k),滑块A与水平地面间的最大静摩擦力为正压力的μ倍.问:

(1)当滑块与O’点距离为r时,弹性细绳对滑块A的拉力为多大?

(2)滑块处于怎样的区域内时可以保持静止状态?

答案

(1)从几何关系看出:弹性细绳的伸长量为△x=

h2+r2

弹性细绳对滑块A的拉力为FT=k△x=k

h2+r2

(2)设A静止时离O′的距离为r,此位置处A将受到四个力的作用如图:

对FT正交分解,由于处于平衡状态所以有:

竖直方向:FN+FTsinθ=mg,

水平方向:FTcosθ=Ff

而FT=k

h
sinθ
,Ffmax=μFN

所以有:k

h
sinθ
cosθ=f≤fmax=μ(mg-kh)

其中

h
sinθ
cosθ=r

r≤

μ(mg-kh)
k

这表明,滑块可以静止在以O′为圆心,

μ(mg-kh)
k
为半径的圆域内的任意位置.

答:(1)当滑块与O’点距离为r时,弹性细绳对滑块A的拉力为k

h2+r2

(2)滑块可以静止在以O’为圆心,

μ(mg-kh)
k
为半径的圆域内的任意位置.

选择题
填空题