①若f(x)是定义在[-1,1]上的偶函数,且在[-1,0]上是增函数,
则函数在[0,1]上为减函数,
若θ∈(,),则0<cosθ<sinθ<1,
则f(sinθ)<f(cosθ),故①为假命题;
②∵tanA+tanB=tan(A+B)(1-tanAtanB)
∴tanA+tanB+tanC=tan(A+B)(1-tanAtanB)+tanC=tanC(tanAtanB-1)+tanC=tanAtanBtanC>0,
∴A,B,C是△ABC的内角,故内角都是锐角.
反之,当△ABC的内角都是锐角时,tanA+tanB+tanC>0.
故△ABC为锐角三角形是tanA+tanB+tanC>0的充要条件,故②是真命题;
③∵|+|=|-|,∴2+•+2=2-•+2,
∴•=0,故③正确;
④设f(x)的对称中心是(a,b),有f(x)+f(2a-x)=2b
f(x)+f(2a-x)=+
=(4x2-8ax+2a+2)÷(4x2-8ax-4a-1)
=2b,
∴2a+2+4a+1=0,2b=1
a=-,b=,
∴f(x)的对称中心是(-,),故④不正确;
⑤∵p∨q为假命题,∴p,q均为假命题,
即¬p:x∈R,mx2+1>0和¬q:x∈R,x2+mx+1≤0均为真命题,
由¬p:x∈R,mx2+1>0为真命题,得到m≥0;
由¬q:x∈R,x2+mx+1≤0为真命题,得到△=m2-4≥0,解得m≥2,或m≤-2.
综上,m≥2.故⑤正确.
故选C.