已知函数f(x)=2x-1,对于满足0<x1<x2<2的任意x1、x2,给出下列结论: (1)(x1-x2)[f(x2)-f(x1)]<0; (2)x2f(x1)<x1f(x2); (3)f(x2)-f(x1)>x2-x1; (4)
其中正确结论的序号是( )
|
∵f(x)=2x-1,0<x1<x2<2,
∴x1-x2<0,f(x2)-f(x1)>0,
∴(x1-x2)[f(x2)-f(x1)]<0,故(1)成立;
∵f(x)=2x-1,0<x1<x2<2,
∴0<f(x1)<f(x2)<3,
∴x2f(x1)<x1f(x2)不成立,即(2)不成立;
∵f(x)=2x-1,0<x1<x2<2,
∴0<f(x1)<f(x2)<3,
∴f(x2)-f(x1)>x2-x1成立,即(3)成立;
∵f(x)=2x-1,0<x1<x2<2,
∴
=f(x1) +f(x2) 2
-1,2x1+2x2 2
f(
) =2x1+x2 2
-1,x1+x2 2
∴
>f(f(x1)+f(x2) 2
)不成立.x1+x2 2
故选B.