问题
填空题
已知向量
|
答案
|
|=1,|a
|=2,向量b
、a
的夹角为b
,π 3
则
•a
=|b
|×|a
|×cosb
=1,π 3
|
-b
|2=(a
-b
)2=a
2+b
2-2a
•a
=3,b
则|
-b
|=a
;3
故答案为
.3
已知向量
|
|
|=1,|a
|=2,向量b
、a
的夹角为b
,π 3
则
•a
=|b
|×|a
|×cosb
=1,π 3
|
-b
|2=(a
-b
)2=a
2+b
2-2a
•a
=3,b
则|
-b
|=a
;3
故答案为
.3