问题 问答题

设f(x)∈C[a,b],在(a,b)内二阶可导.
1.若f(a)=0,f(b)<0,f’+(a)>0.证明:存在ξ∈(a,b),使得f(ξ)f"(ξ)+f’2(ξ)=0.

答案

参考答案:

,因为F(a)=F(b)=0,所以由罗尔定理,存在c∈(a,b),使得F’(c)=0,即f(c)=0.
令h(x)=exf(x),由h(a)=h(c)=h(b)=0,根据罗尔定理,存在ξ1∈(a,c),ξ2∈(c,b),使得h’(ξ1)=h’(ξ2)=0,则h’(x)=ex[f(x)+f’(x)],所以f(ξ1)+f’(ξ1)=0,f(ξ2)+f’(ξ2)=0.
再令G(x)=e-x[f(x)+f’(x)],由G(ξ1)=G(ξ2)=0,根据罗尔定理,存在η∈(ξ1,ξ2)

(a,b),使得G’(η)=0,而G’(x)=e-x[f"(x)-f(x)]且e-x≠0,所以f"(η)=f(η).

选择题
单项选择题