问题
填空题
已知A={(x,y)|x2+y2=1},B={(x,y)|
|
答案
A={(x,y)|x2+y2=1}表示单位圆
B={(x,y)|
+x a
=1}表示直线y b
要使集合A与集合B有且只有一个公共元素
即只需直线与圆有一个交点
直线方程为bx+ay-ab=0
d=
=1化简得a2+b2=a2b2|ab| a2+b2
故答案为:a2+b2=a2b2.
已知A={(x,y)|x2+y2=1},B={(x,y)|
|
A={(x,y)|x2+y2=1}表示单位圆
B={(x,y)|
+x a
=1}表示直线y b
要使集合A与集合B有且只有一个公共元素
即只需直线与圆有一个交点
直线方程为bx+ay-ab=0
d=
=1化简得a2+b2=a2b2|ab| a2+b2
故答案为:a2+b2=a2b2.