问题
填空题
∫-22|x2-x|dx的值为______.
答案
原式
=∫-20(x2-x)dx+∫01(x-x2)dx+∫12(x2-x)dx
=(
x3-1 3
x2)|-20+(-1 2
x3+1 3
x2)|01+( 1 2
x3-1 3
x2)|121 2
=
.17 3
故答案为:
.17 3
∫-22|x2-x|dx的值为______.
原式
=∫-20(x2-x)dx+∫01(x-x2)dx+∫12(x2-x)dx
=(
x3-1 3
x2)|-20+(-1 2
x3+1 3
x2)|01+( 1 2
x3-1 3
x2)|121 2
=
.17 3
故答案为:
.17 3