问题
填空题
已知n=
|
答案
an=
(2x+1)dx=(x2+x) ∫ n0
=n2+n| n0
∴
=1 an
=1 n2+n
-1 n 1 n+1
∴数列{
}的前n项和为Sn=1 an
+1 a1
+…+1 a2
=1-1 an
+1 2
-1 2
+…+1 3
-1 n
=1-1 n+1
=1 n+1
,n n+1
bn=n-35,n∈N*,
则bnSn=
×(n-35)=n+1+n n+1
-37≥2×6-37=-25,36 n+1
等号当且仅当n+1=
,即n=5时成立,36 n+1
故bnSn的最小值为-25.
故答案为:-25