问题
填空题
三条线段能构成三角形的条件是:任意两条线段长度的和大于第三条线段的长度.现有长为144cm的铁丝,要截成n小段(n>2),每段的长度不小于1cm,如果其中任意三小段都不能拼成三角形,则n的最大值为______.
答案
∵每段的长为不小于1(cm)的整数,
∴最小的边最小是1,
∵三条线段不能构成三角形,则第二段是1,第三段是2,第四段与第二、第三段不能构成三角形,则第四边最小是3,第五边是5,依次是8,13,21,34,55,
再大时,各个小段的和大于150cm,不满足条件.
上述这些数之和为143,与144相差1,故可取1,1,2,3,5,8,13,21,34,56,
这时n的值最大,n=10.
故答案为:10.