问题
选择题
O为△ABC平面上一定点,该平面上一动点p满足M={P|
|
答案
如图:D是BC的中点,
在△ABC中,由正弦定理得,
=|
|AB sinC |
|AC sinB
即
=sinc |
|AB
,设t=sinB| |
|AC
=sinc |
|AB
,sinB| |
|AC
代入
=OP
+λ(OA
sinC+AB |
|AB
sinB)得,AC |
|AC
=OP
+λt(OA
+AB
)①,AC
∵D是BC的中点,∴
+AB
=2AC
,代入①得,AD
=OP
+2λtOA
,AD
∴
=2λtAP
且λ、t都是常数,则AD
∥AP
,AD
∴点P得轨迹是直线AD,
△ABC的重心一定属于集合M,
故选A.