问题 选择题
O为△ABC平面上一定点,该平面上一动点p满足M={P|
OP
=
OA
+λ(
AB
|
AB
|
sinC+
AC
|
AC
|
sinB) ,λ>0}
,则△ABC的(  )一定属于集合M.
A.重心B.垂心C.外心D.内心
答案

如图:D是BC的中点,

在△ABC中,由正弦定理得,

|
AB
|
sinC
=
|
AC
|
sinB

sinc
|
AB
|
=
sinB|
|
AC
|
,设t=
sinc
|
AB
|
=
sinB|
|
AC
|

代入

OP
=
OA
+λ(
AB
|
AB
|
sinC+
AC
|
AC
|
sinB)得,

OP
=
OA
+λt(
AB
+
AC
)
①,

∵D是BC的中点,∴

AB
+
AC
=2
AD
,代入①得,

OP
=
OA
+2λt
AD

AP
=2λt
AD
且λ、t都是常数,则
AP
AD

∴点P得轨迹是直线AD,

△ABC的重心一定属于集合M,

故选A.

选择题
单项选择题