(20分)如图所示,光滑水平地面上方被竖直平面MN分隔成两部分,左边(包括竖直平面MN)有匀强磁场B,右边有匀强电场E0(图中未标)。在O点用长为L=5m的轻质不可伸长的绝缘细绳系一质量mA=0.02kg、带负电且电荷量qA=4×10-4C的小球A,使其在竖直平面内以速度vA=2.5m/s沿顺时针方向做匀速圆周运动,运动到最低点时与地面刚好不接触。处于原长的轻质弹簧左端固定在墙上,右端与质量mB=0.01kg、带负电且电荷量qB=2×10-4C的小球B接触但不连接,此时B球刚好位于M点。现用水平向左的推力将B球缓慢推到P点(弹簧仍在弹性限度内),推力所做的功是W=2.0J,当撤去推力后,B球沿地面向右运动到M点时对地面的压力刚好为零,继续运动恰好能与A球在最低点发生正碰,并瞬间成为一个整体C(A、B、C都可以看着质点),碰撞前后总电荷量保持不变,碰后瞬间匀强电场大小变为E1=1×103 N/C,方向不变。g=10m/s2。求:
(1)匀强磁场的磁感应强度B的大小和方向?
(2)匀强电场的电场强度E0的大小和方向?
(3)整体C运动到最高点时绳对C的拉力F的大小?
(1)B=25T,方向垂直纸面水平向外
(2)E0=5×102 N/C,方向竖直向下
(3)F=1.5N
(1)设B球运动到M点时速度为vB,根据能量守恒有
W=, vB=20 m / s········································(1分)
B球运动到M点时对地面的压力刚好为零,则
qBvBB=mBg ·············(1分) 解得B=25T···············(1分)
B球带负电,受洛伦兹力竖直向上,则磁场方向垂直纸面水平向外。··(1分)
(2)小球A在竖直平面内做匀速圆周运动,所以受到的电场力与重力大小相等、方向相反。即有qAE0=mAg·····································(1分)
解得E0=5×102 N/C···········································(1分)
A球带负电,受到的电场力竖直向上,则电场方向竖直向下。·········(1分)
(3)设A、B碰后瞬间整体C带电荷量为qc,质量为mc,速度为vc,由动量守恒
qc=qA+qB=6×10-4C,mc=mA+mB=0.03kg
mBvB-mAvA=mc vc·············································(1分)
解得vc=5m/s
设整体C受到电场力和重力的合力为F合,在最低点做圆周运动需要的向心力为F向,则F合=qcE1-mcg=0.3N,F向==0.15N, F合>F向,所以,细绳将松驰,整体C不会做圆周运动到达最高点,而是从碰后开始做类平抛运动。·························································(2分)
设做类平抛运动的加速度为a,经过时间t在某点S将绳绷紧,对应的水平方向的距离为x,竖直方向的距离为y,如图,则
a=F合/mc····(1分) x=vct ······(1分)
y=·······························(1分)
且有x2+(L-y)2=L2或x2+(y-L)2=L2 ····(1分)
解得a=10 m/s2,t=1s,x=5m,y=5m
由于x=y=L,某点S与O点在同一水平位置,C的水平速度变为零。(1分)
C从S点到最高点之间将做圆周运动,设在S点的竖直速度为vs,到达最高点的速度为v,则vs=at, vs=10m/s ································(1分)
, v=10
m/s·····················(1分)
根据牛顿第二定律得F+mcg-qcE1=······················(2分)
解得F=1.5N·················································(1分)