问题
解答题
某造船公司年造船量是20艘,已知造船x艘的产值函数为R(x)=3700x+45x2﹣10x3(单位:万元),成本函数C(x)=460x+5000(单位:万元)
(1)求利润函数P(x);(提示:利润=产值﹣成本)
(2)问年造船量安排多少艘时,可使公司造船的年利润最大?
答案
解:(1)根据利润=产值﹣成本,
因为造船x艘的产值函数为R(x)=3700x+45x2﹣10x3,
成本函数C(x)=460x+5000
所以P(x)=R(x)﹣C(x)=﹣10x3+45x2+3240x﹣5000(x∈N*,且1≤x≤20);
(2)P′(x)=﹣30x2+90x+3240=﹣30(x﹣12)(x+9),
∵x>0,∴P′(x)=0时,x=12,
∴当0<x<12时,P′(x)>0,
当x>12时,P′(x)<0,
∴x=12时,P(x)有最大值.
即年造船量安排12艘时,可使公司造船的年利润最大.