已知函数f(x)=ax+lnx(a∈R).
(Ⅰ)若a=2,求曲线y=f(x)在x=1处切线的斜率;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(
x2),求a的取值范围.
解:(Ⅰ)由已知,则f'(1)=2+1=3.
故曲线y=f(x)在x=1处切线的斜率为3;
(Ⅱ).
①当a≥0时,由于x>0,故ax+1>0,f'(x)>0
所以,f(x)的单调递增区间为(0,+∞).
②当a<0时,由f'(x)=0,得.
在区间上,f'(x)>0,
在区间上f'(x)<0,
所以,函数f(x)的单调递增区间为,单调递减区间为;
(Ⅲ)由已知,转化为f(x)max<g(x)min.
由x∈[0,1],得到g(x)min=g(1)=1,
由(Ⅱ)知,当a≥0时,f(x)在(0,+∞)上单调递增,值域为R,故不符合题意.
当a<0时,f(x)在上单调递增,在上单调递减,
故f(x)的极大值即为最大值,
,
所以1<﹣1﹣ln(﹣a),解得.