问题 解答题

已知函数f(x)=ax3+x2+bx(其中常数a,b∈R),g(x)=f(x)+f'(x)是奇函数.

(1)求f(x)的表达式;

(2)讨论g(x)的单调性,并求g(x)在区间[1,2]上的最大值和最小值.

答案

解:(1)由题意得f'(x)=3ax2+2x+b

因此g(x)=f(x)+f'(x)=ax3+(3a+1)x2+(b+2)x+b

因为函数g(x)是奇函数,所以g(﹣x)=﹣g(x),

即对任意实数x,

有a(﹣x)3+(3a+1)(﹣x)2+(b+2)(﹣x)+b=﹣[ax3+(3a+1)x2+(b+2)x+b]

从而3a+1=0,b=0, 解得

因此f(x)的解析表达式为

(2)由(1)知, 所以g'(x)=﹣x2+2,

令g'(x)=0 解得

则当时,g'(x)<0

从而g(x)在区间上是减函数,

从而g(x)在区间上是增函数,

由前面讨论知,g(x)在区间[1,2]上的最大值与最小值只能在时取得,

因此g(x)在区间[1,2]上的最大值为,最小值为

填空题
单项选择题